Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity Theorems for Laplace Beltrami Operator on Riemannian Manifolds

Abstract. For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of these results for the LaplaceBeltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be e...

متن کامل

The Laplace-Beltrami-Operator on Riemannian Manifolds

This report mainly illustrates a way to compute the Laplace-Beltrami-Operator on a Riemannian Manifold and gives information to why and where it is used in the Analysis of 3D Shapes. After a brief introduction, an overview over the necessary properties of manifolds for calculating the Laplacian is given. Furthermore the two operators needed for defining the Laplace-Beltrami-Operator the gradien...

متن کامل

Discrete Laplace-Beltrami Operator Determines Discrete Riemannian Metric

The Laplace-Beltrami operator of a smooth Riemannian manifold is determined by the Riemannian metric. Conversely, the heat kernel constructed from its eigenvalues and eigenfunctions determines the Riemannian metric. This work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the discrete Laplace-Beltrami operator and the discrete Riemannian metric (unique up to a scali...

متن کامل

Uniform Estimates of the Resolvent of the Laplace–Beltrami Operator on Infinite Volume Riemannian Manifolds with Cusps.II

We prove uniform weighted high frequency estimates for the resolvent of the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds under some natural assumptions on the metric on the ends of the manifold. This extends previous results by Burq [3] and Vodev [8].

متن کامل

Laplace-Beltrami operator on Digital Curves

Many problems in image analysis, digital processing and shape optimization are expressed as variational problems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The discretization of the laplace-Beltrami operator has been widely stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2011

ISSN: 0001-8708

DOI: 10.1016/j.aim.2010.08.006